

Validation of an Automated Method for Library Preparation for a Next-Generation Sequencing-Based Assay for Oncology

<u>Catherine I. Dumur, Paula Anderson, M. Fernanda Sábato, Celeste N. Powers, Andrea Ferreira-Gonzalez</u> Department of Pathology, Virginia Commonwealth University, Richmond, VA

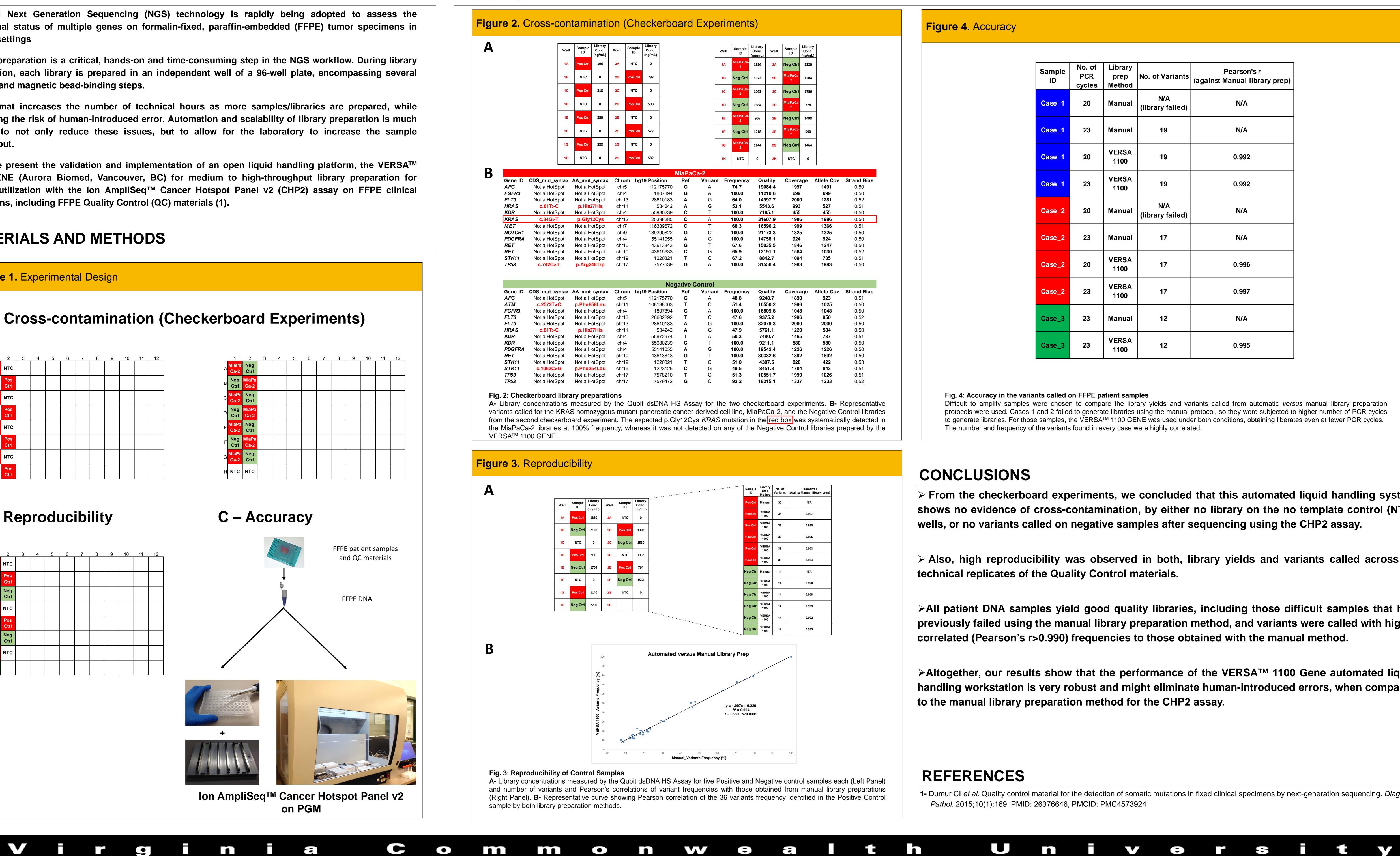
BACKGROUND

Targeted Next Generation Sequencing (NGS) technology is rapidly being adopted to assess the mutational status of multiple genes on formalin-fixed, paraffin-embedded (FFPE) tumor specimens in clinical settings

Library preparation is a critical, hands-on and time-consuming step in the NGS workflow. During library preparation, each library is prepared in an independent well of a 96-well plate, encompassing several washes and magnetic bead-binding steps.

This format increases the number of technical hours as more samples/libraries are prepared, while increasing the risk of human-introduced error. Automation and scalability of library preparation is much needed to not only reduce these issues, but to allow for the laboratory to increase the sample throughput.

Here, we present the validation and implementation of an open liquid handling platform, the VERSA[™] 1100 GENE (Aurora Biomed, Vancouver, BC) for medium to high-throughput library preparation for routine utilization with the Ion AmpliSeq[™] Cancer Hotspot Panel v2 (CHP2) assay on FFPE clinical specimens, including FFPE Quality Control (QC) materials (1).


Figure 1. Experimental Design A – Cross-contamination (Checkerboard Experim A Pos NTC Ca-2 Ctrl B NTC C Ctrl Ca-MiaPa Neg Ca-2 Ctrl C Pos NTC D NTC Pos NTC F NTC Pos Ctrl Neg Ca-2 Ctrl **B** – Reproducibility **C** – Accuracy 4 5 6 7 8 9 10 11 12 NTC Ctrl Ion AmpliSeq[™] Cancer Hotspot Panel v2 on PGM

MATERIALS AND METHODS

n	en	ts)			
7	8	9	10	11	12	T
						-
						-
						-
						-
						-
						-
						-
	FFPE	E pati Id QC	ent s Cmat	amp		
	F	FPE [DNA			

RESULTS

Γ			Library			Library	7	
	Well	Sample ID	Conc.	Well	Sample ID	Conc.		
-			(ng/mL)			(ng/mL)	-	
	1A	MiaPaCa- 2	1356	2A	Neg Ctrl	2220		
-	1B	Neg Ctrl	1872	2B	MiaPaCa- 2	1284	1	
		MiaPaCa					-	
	1C	2	1062	2C	Neg Ctrl	1756	_	
	1D	Neg Ctrl	1684	2D	MiaPaCa- 2	728		
	1E	MiaPaCa- 2	906	2E	Neg Ctrl	1498		
-	1F	Neg Ctrl	1218	2F	MiaPaCa- 2	590	-	
	1G	MiaPaCa	1144	2G	Neg Ctrl	1464	-	
		2					-	
l	1H	NTC	0	2H	NTC	0		
1-2								
Variar	nt Fre	quency	v Qu	ality	Cover	age	Allele Cov	Strand Bias
А		74.7	190	84.4	199	7	1491	0.50
А		100.0	112	10.6	699)	699	0.50
G		64.0	149	97.7	200	0	1281	0.52
G		53.1	554	43.6	993	3	527	0.51
Т		100.0	71	65.1	455	5	455	0.50
А		100.0	316	607.9	198	6	1986	0.50
Т		68.3	165	96.2	199	9	1366	0.51
С		100.0	211	73.3	132	5	1325	0.50
G		100.0	147	′58.1	924	ļ	924	0.50
Т		67.6	150	35.5	184	6	1247	0.50
G		65.9	121	91.1	156	4	1030	0.52
С		67.2	884	42.7	109	4	735	0.51
А		100.0	315	56.4	198	3	1983	0.50
ontrol Variar	of ⊑=-			olity.	Cover	200		Strand Dies
Variar A		quency 48.8		ality 48.7	Covera 189	-	Allele Cov	Strand Bias
A C		46.6 51.4		+8.7 50.2	189		923 1025	0.51 0.50
A		51.4 100.0		30.2 309.8	104		1025	0.50
C		47.6		75.2	199		950	0.52
G		47.0 100.0		79.3	200		2000	0.52
G		47.9		61.1	122		584	0.50
		50.3		B0.7	146		737	0.51
		100.0		11.1	580		580	0.50
А				42.4	122		1226	0.50
A T			195			-		0.00
A T G		100.0					1892	0.50
A T G T		100.0 100.0	303	32.6	189	2	1892 422	0.50 0.53
A T G T C		100.0	303 430	32.6 07.5		2 }	422	0.53
A T G T		100.0 100.0 51.0	303 430 845	32.6	189 828	2 3 4		

 Sample ID	Library prep Method	No. of Variants	Pearson's r (against Manual library prep)
Pos Ctrl	Manual	36	N/A
Pos Ctrl	VERSA 1100	36	0.997
Pos Ctrl	VERSA 1100	36	0.995
Pos Ctrl	VERSA 1100	36	0.995
Pos Ctrl	VERSA 1100	36	0.993
Pos Ctrl	VERSA 1100	36	0.994
Neg Ctrl	Manual	14	N/A
Neg Ctrl	VERSA 1100	14	0.998
Neg Ctrl	VERSA 1100	14	0.998
Neg Ctrl	VERSA 1100	14	0.999
Neg Ctrl	VERSA 1100	14	0.992
 Neg Ctrl	VERSA 1100	14	0.995

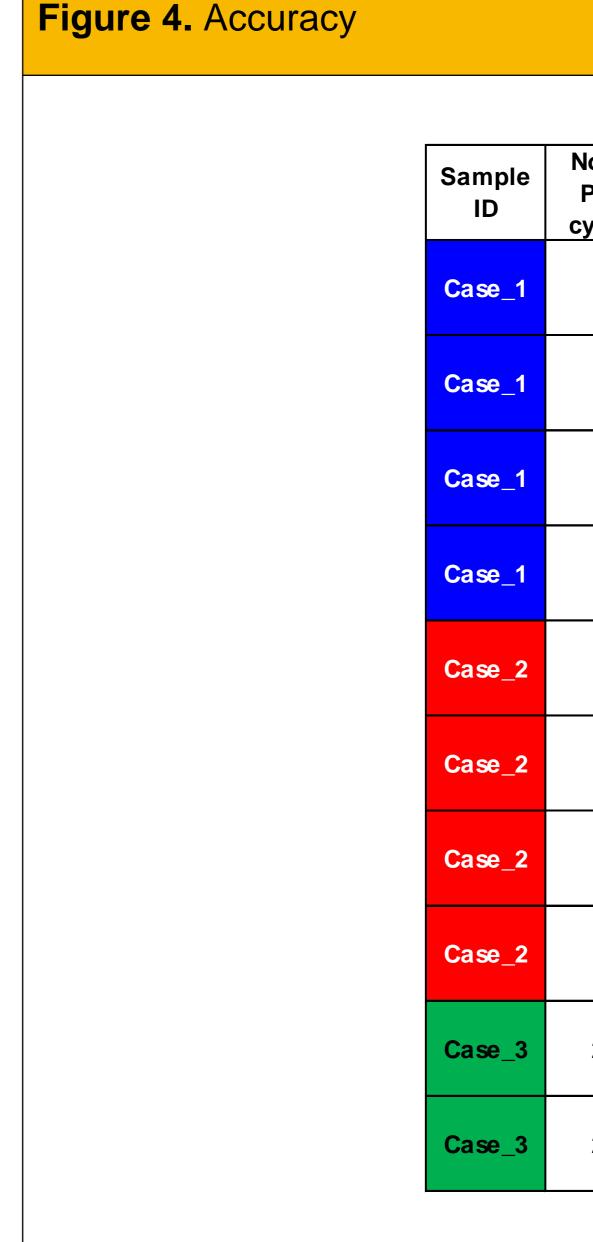


Fig. 4: Accuracy in the variants called on FFPE patient samples Difficult to amplify samples were chosen to compare the library yields and variants called from automatic versus manual library preparation protocols were used. Cases 1 and 2 failed to generate libraries using the manual protocol, so they were subjected to higher number of PCR cycles to generate libraries. For those samples, the VERSA[™] 1100 GENE was used under both conditions, obtaining liberates even at fewer PCR cycles The number and frequency of the variants found in every case were highly correlated.

CONCLUSIONS

> From the checkerboard experiments, we concluded that this automated liquid handling system shows no evidence of cross-contamination, by either no library on the no template control (NTC) wells, or no variants called on negative samples after sequencing using the CHP2 assay.

> Also, high reproducibility was observed in both, library yields and variants called across all technical replicates of the Quality Control materials.

>All patient DNA samples yield good quality libraries, including those difficult samples that had previously failed using the manual library preparation method, and variants were called with highly correlated (Pearson's r>0.990) frequencies to those obtained with the manual method.

➤Altogether, our results show that the performance of the VERSA[™] 1100 Gene automated liquid handling workstation is very robust and might eliminate human-introduced errors, when compared to the manual library preparation method for the CHP2 assay.

REFERENCES

1- Dumur CI et al. Quality control material for the detection of somatic mutations in fixed clinical specimens by next-generation sequencing. Diagn Pathol. 2015;10(1):169. PMID: 26376646, PMCID: PMC4573924

No. of PCR cycles	Library prep Method	No. of Variants	Pearson's r (against Manual library prep)
20	Manual	N/A (library failed)	N/A
23	Manual	19	N/A
20	VERSA 1100	19	0.992
23	VERSA 1100	19	0.992
20	Manual	N/A (library failed)	N/A
23	Manual	17	N/A
20	VERSA 1100	17	0.996
23	VERSA 1100	17	0.997
23	Manual	12	N/A
23	VERSA 1100	12	0.995