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OCancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopath-

ological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics
has heralded an explosion in newprognostic factors. Overall, histopathology, immunohistochemistry andmolec-
ular biology techniques have described important new prognostic subgroups in the different cancer categories.
Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in
several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent
novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal,
esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relat-
ing specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for
diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane
channels and transporters in cancers.

© 2014 Published by Elsevier B.V.
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1. Introduction

Tumor diagnostics currently relies on imaging, laboratory tests
(including tests for circulating tumor markers) and pathology on tumor
samples, either biopsies or surgical specimens. Recent advancements
in high-throughput genomics, proteomics and other -omics analyses,
as well as high-content imaging modalities have greatly improved
tumor diagnosis, with the aim of eventually optimizing treatment. We
are now only a short distance away from using these prognostic factors
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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and system biology-based technologies to identify specific patients'
subgroups as well as to determine which patients may benefit from
specific targeted therapy. These achievements will ultimately change
cancer patients' treatments and care.

Ion channels and transporters (ICT) are progressively emerging as a
novel class of membrane proteins expressed in several types of human
cancers and regulating different aspect of cancer cell behavior. In the
near future, ICT could represent novel cancer biomarkers, once appro-
priately validated.

The aim of the present review is to update recent literature sup-
porting the inclusion of specific ICT types or profiles among cancer
biomarkers. Different types of ICT have been found to be functionally
expressed in different types of cancer cells, and to regulate different
aspects of tumor cell behavior (cell proliferation, apoptosis, migration,
invasiveness etc). In primary human cancers, different ICTs have been
found to be either mis-, over- or hypo-expressed. Hereafter, we will
present and discuss data obtained in primary cancers (mainly carcino-
mas) where the expression of specific ICTs has been correlated with
clinico-pathological features and survival data, thus leading to conceiv-
ably consider a single ICT or an ICT profile as a potential cancer biomark-
er. Data regarding the functional roles of ICT in cancer cells are not
discussed in the text, but are reported in Tables 2–8 (which also sum-
marize what described in the text) and summarized in Figs. 1 and 2.
Moreover, a synoptic table showing the different nomenclature of the
ion channels mentioned in the text and tables are in Table 1. Through-
out the main text and in the Tables 2–8, ICTs will be addressed accord-
ing to HGNC and IUPHAR nomenclature. We will focus on seven cancer
types (breast, prostate, lung, esophagus, stomach, colon and pancreas)
which actually represent great health problems, due to either high inci-
dence or mortality rates. For other tumor types, the reader can refer to
[1] for hematologic malignancies and to [2] for brain tumors.

2. Cancer biomarkers

According to the National Cancer Institute (NCI) definition (NCI
Dictionary of Cancer Terms, http://www.cancer.gov/dictionary?cdrid=
U
N
C
O

R
R
E
C

Fig. 1. ICT profile and role in the solid cancers (Breast, Prostate, Lung, Colorectal, Esophageal, Pan
by ICT in cancer biology. Only ICTs whose expression has been described in tumor cell lines ar

Please cite this article as: E. Lastraioli, et al., Ion channel expression as
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46636) a biomarker is “a biological molecule found in blood, other
body fluids, or tissues that is a sign of a normal or abnormal process,
or of a condition or disease. A biomarker may be used to see how well
the body responds to a treatment for a disease or condition”. Cancer
research and medicine greatly relies on biomarkers which can be used
in three primary ways: 1) to help diagnosis, e.g. to identify early
stage cancers (Diagnostic); 2) to forecast how aggressive a condition
is, e.g. to determine a patient's ability to fare in the absence of treatment
(Prognostic); 3) to predict how well a patient will respond to a define
treatment (Predictive).

In recent years, the technology available to help physicians to detect
and diagnose cancer has changed dramatically. Different imaging
techniques are nowadays more accurate and reproducible. The use of
biomarkers has improved diagnosis either due to molecular imaging
or as tool for ex vivo diagnosis. Recently, efforts have been made to
identify targets and probes to be used for molecular imaging but the
discussion of such techniques is out of the scope of the present review.
For the purposes of this review we will briefly summarize the main
techniques which take into advantage of the use of biomarkers to ob-
tain diagnostic, prognostic and predictive data on the cancer under
study.
E
D
 P

R2.1. Immunohistochemistry (IHC)

IHC is an indispensable research and diagnostic tool used to assess
the presence or absence of molecular tumor markers on paraffin-
embedded tissue. Tumor positivity for a given marker is frequently
evaluated using predetermined cutoffs. The employment of categorical
scoring system is motivated by the ease of interpretation of positive
tissue by pathologists and is further supported by substantial inter-
observer agreement. Noticeably, it is mandatory to validate immu-
nohistochemical assays before proposing a given marker as a poten-
tial diagnostic or prognostic factor. Indeed, many of the cancer
biomarkers routinely used in cancer diagnostics are based on this
technique.
creatic and Gastric) described in the paper. This figure summarizes themain roles exerted
e shown.
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Fig. 2. Effects of hormones and growth factors on ICTs. The figure summarizes data relative to ICts whose expression and role are shown in Fig. 1.
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2.2. Omics profiles

The remarkable technological breakthroughs of the last 10 years
have greatly contributed to improve cancer diagnostics through the
study of tumor genomes using various profiling strategies including
(but not limited to) DNA copy number, DNA methylation, and tran-
scriptome and whole-genome sequencing – technologies that may col-
lectively be defined as “omics”. The goal of cancer genomics is to survey
these omics data to identify genes and pathways deregulated in cancer
and reveal those that may be useful for the detection and management
of disease. At present, andmuchmore in the near future, such discover-
ies will improve our understanding of the biology of cancer and lead to
the discovery of novel diagnostic, prognostic, and predictive markers
that will ultimately improve patient outcomes.

2.3. Plasma-based analyses

The genetic profile of solid tumors is currently obtained from surgi-
cal or biopsy specimens; however, the latter procedure cannot always
be performed routinely owing to its invasive nature.Moreover, informa-
tion acquired from a single biopsy provides a spatially and temporally
limited snap-shot of a tumor and might fail to reflect its heterogeneity.
For these reasons, the possibility of performing a liquid biopsy for a spe-
cific tumor has greatly attracted researchers. A liquid biopsy, or blood
sample, can indeed provide the genetic landscape of all cancerous le-
sions (primary and metastases) as well as offering the opportunity to
systematically track genomic evolution. The analysis of blood samples
for circulating tumor cells (CTC) or circulating tumor nucleic acids, rep-
resents a “liquid biopsy”which can be conducted repeatedly and might
allow real-timemonitoring of cancer therapies in individual patients. In
liquid biopsies it is also possible tomeasure circulating free DNA, aswell
as circulating RNAs belonging to the micro-RNA class (miRNAs).1 Some
1 MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding RNAs, which regulate
gene expression at the post-transcriptional level, through the binding to complementary
sites of target mRNAs in the 3′-untraslated (3′UTR) regions. By this way, miRNAs lead to
either degradation of target mRNAs or repression of mRNA translation.

Please cite this article as: E. Lastraioli, et al., Ion channel expression as
dx.doi.org/10.1016/j.bbamem.2014.12.016
DmiRNAs possess the tumor marker potential for diagnostic, therapeutic,
prognostic exploration.
185

186
3. Ion channels and transporters: use as cancer biomarkers in Breast
Cancer (BC)

BC is still one of the major causes of cancer related mortality in the
developedworld and its incidence is nowadays rising also in developing
countries [3]. Although often described as one disease, BC is actually
a collection of diseases, with very different prognoses and optimal treat-
ment regimens. Themost updated and used classification of BCs is based
on the expression (assessed by IHC or FISH2) of four biomarkers: the es-
trogen and progesterone receptors, the human epidermal growth factor
receptor 2 (HER2) and the proliferation index (Ki67 staining). Clinically,
BCs that express the estrogen receptor are generally associated with a
relatively good long-term prognosis due to their responsiveness to hor-
monal therapy. HER2 positive BCs well respond to treatment with the
monoclonal antibody trastuzumab which targets HER2 receptors. In
contrast, BC which do not express any of the above biomarkers, defined
as ‘triple negative’ or “basal like”, are generally associated with a poor
prognosis and a lack of long-term effective therapies. The diversity of
BC disease is also evident from “omics” studies which have used hierar-
chical clustering to define various BC molecular subtypes. Therefore,
recent studies are focusing on definingmore detailed biological charac-
teristics to improve patient risk stratification and to ensure the highest
chance of benefit and the least toxicity from a specific treatmentmodal-
ity. In this context, the identification of a peculiar BC-related, ICT profile
could provide further help for prognostic and predictive purposes.
Indeed, several types of ion channels have been found to be mis- and
over-expressed in BC (Table 2). Among potassium channels the expres-
sion of BK channels (encoded by the KCNMA1 gene) in BC positively
correlates with that of estrogen receptors [4] and the levels and activity
of BK channels are higher in those BC cases thatmetastatize to brain [5].
Similarly, the expression of Kir3.1 (KCNJ3) channels in BC positively
2 FISH: Fluorescent in situ hybridization.
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t1:1 Table 1
t1:2 Ion channels and transporters discussed in the present review.

t1:3 Channel
t1:4 type

Hgnc
name

Iuphar
name

Alternative names Full name Gene
name

Chromosome
location

t1:5 Potassium KCNA3 Kv1.3 MK3, HLK3, HPCN3 Potassium voltage-gated channel, Shaker-related subfamily, member 3 KCNA3 1p13.3
t1:6 KCNA5 Kv1.5 HK2, HPCN1 Potassium voltage-gated channel, Shaker-related subfamily, member 5 KCNA5 12p13
t1:7 KCNC1 Kv3.1 - potassium voltage-gated channel, Shaw-related subfamily, member 1 KCNC1 11p15
t1:8 KCNC4 Kv3.4 - Potassium voltage-gated channel, Shaw-related subfamily, member 4 KCNC4 1p21
t1:9 KCND1 Kv4.1 - Potassium voltage-gated channel, Shal-related subfamily, member 1 KCND1 Xp11.23
t1:10 KCNE2 - LQT6, MiRP1 Potassium voltage-gated channel, Isk-related subfamily, member 2 KCNE2 21q22.1
t1:11 KCNH1 Kv10.1 eag1 Potassium voltage-gated channel, subfamily H (eag-related), member 1 hEAG1 1q32.2
t1:12 KCNH2 Kv11.1 hERG1 Potassium voltage-gated channel, subfamily H (eag-related), member 2 hERG1 7q36.1
t1:13 KCNJ3 Kir3.1 GIRK1, KGA Potassium inwardly-rectifying channel, subfamily J, member 3 KCNJ3 2q24.1
t1:14 KCNK2 K2p 2.1 TREK-1 Potassium channel, subfamily K, member 2 KCNK2 1q41
t1:15 KCNK9 K2P9.1 TASK3 Potassium channel, subfamily K, member 5 KCNK9 8q24.3
t1:16 KCNK5 K2P5.1 TASK2 Potassium channel, subfamily K, member 9 KCNK5 6p21
t1:17 KCNMA1 KCa1.1 mSLO1 Potassium large conductance calcium-activated channel, subfamily M,

alpha member 1
KCNMA1 10q22

t1:18 KCNN4 KCa3.1 hSK4, hKCa4, hIKCa1 Potassium intermediate/small conductance calcium-activated channel,
subfamily N, member 4

KCNN4 19q13.2

t1:19 KCNQ1 Kv7.1 KCNA9, KVLQT1 Potassium voltage-gated channel, KQT-like subfamily, member 1 KCNQ1 11p15.5
t1:20 KCNQ5 Kv7.5 - Potassium voltage-gated channel, KQT-like subfamily, member 5 KCNQ5 6q14
t1:21 Sodium SCN5A Nav 1.5 - Sodium channel, voltage-gated, type V, alpha subunit SCN5A 3p21
t1:22 SCN9A Nav 1.7 - Sodium channel, voltage-gated, type IX, alpha subunit SCN9A 2q24
t1:23 Calcium ATP2B2 PMCA2 - ATPase, Ca++ transporting, plasma membrane 2 ATP2B2 3p25.3
t1:24 ATP2C1 SPCA1 ATP2C1A, PMR1 ATPase, Ca++ transporting, type 2C, member 1 ATP2C1 3q21.3
t1:25 ATP2C2 SPCA2 KIAA0703 ATPase, Ca++ transporting, type 2C, member 2 ATP2C2 16q24.1
t1:26 CACNA1H Cav3.2 - Calcium channel, voltage-dependent, T type, alpha 1H subunit CACNA1H
t1:27 CACNA2D1 - IncRNA-N3 Calcium channel, voltage-dependent, alpha 2/delta subunit 1 CACNA2D1 7q21-q22
t1:28 CACNA2D2 - KIAA0558 Calcium channel, voltage-dependent, alpha 2/delta subunit 2 CACNA2D2 3p21.3
t1:29 CACNA2D3 - HSA272268 Calcium channel, voltage-dependent, alpha 2/delta subunit 3 CACNA2D3 3p21.1
t1:30 CACNA2D4 - - calcium channel, voltage-dependent, alpha 2/delta subunit 4 CACNA2D4 12p13.33
t1:31 ORAI1 - CRACM1, FLJ14466 ORAI calcium release-activated calcium modulator 1 ORAI1 12q24.31
t1:32 ORAI3 - MGC13024 ORAI calcium release-activated calcium modulator 3 ORAI3 16p11.2
t1:33 TRPA1 TRPA1 ANKTM1 Transient receptor potential cation channel, subfamily A, member 1 TRPA1 8q13
t1:34 TRPC1 TRPC1 HTRP-1 Transient receptor potential cation channel, subfamily C, member 1 TRPC1 3q23
t1:35 TRPC3 TRPC3 - Transient receptor potential cation channel, subfamily C, member 3 TRPC3 4q27
t1:36 TRPC4 TRPC4 HTRP4, TRP4 Transient receptor potential cation channel, subfamily C, member 4 TRPC4 13q13.3
t1:37 TRPC6 TRPC6 TRP6 Transient receptor potential cation channel, subfamily C, member 6 TRPC6 11q22.1
t1:38 TRPM7 TRPM7 CHAK1, TRP-PLIK, LTRPC7 Transient receptor potential cation channel, subfamily M, member 7 TRPM7 15q21
t1:39 TRPM8 TRPM8 - Transient receptor potential cation channel, subfamily M, member 8 TRPM8 2q37
t1:40 TRPV1 TRPV1 - Transient receptor potential cation channel, subfamily V, member 1 TRPV1 17p13.2
t1:41 TRPV4 TRPV4 OTRPC4, TRP12, VROAC, VRL-2,

VR-OAC, CMT2C
Transient receptor potential cation channel, subfamily V, member 4 TRPV4 12q24.1

t1:42 TRPV6 TRPV6 CaT1 Transient receptor potential cation channel, subfamily V, member 6 TRPV6 7q34
t1:43 Chloride ANO1 CaCC DOG1, FLJ10261, TAOS2 Anoctamin 1, calcium-activated chloride channel ANO1 11q13.2
t1:44 CLCA1 - CLCRG1 Chloride channel accessory 1 CLCA1 1p22.3
t1:45 CLCA2 - CLCRG2 Chloride channel accessory 2 CLCA2 1p22.3
t1:46 CLCA4 - CaCC2 Chloride channel accessory 4 CLCA4 1p31-p22
t1:47 CLIC1 - NCC27, p64CLCP Chloride intracellular channel 1 CLIC1 6p21.3
t1:48 CLIC3 - - Chloride intracellular channel 3 CLIC3 9q34.3
t1:49 Aquaporins AQP1 AQP1 CHIP28 Aquaporin 1 (Colton blood group) AQP1 7p14
t1:50 AQP3 AQP3 GIL, “Gill blood group” Aquaporin 3 (Gill blood group) AQP3 9p13
t1:51 AQP5 AQP5 - Aquaporin 5 AQP5 12q13
t1:52 AQP8 AQP8 - Aquaporin 8 AQP8 16p12
t1:53 AQP9 AQP9 HsT17287, SSC1 Aquaporin 9 AQP9 15q
t1:54 Anions VDAC1 - Outer Mitochondrial Membrane

Protein Porin 1, PORIN
Voltage-Dependent Anion-Selective Channel Protein 1 VDAC1 5q3.1

t1:55 Transporters ABCA3 ABCA3 ABC-C, EST111653, LBM180 ATP-binding cassette, sub-family A (ABC1), member 3 ABCA3 16p13.3
t1:56 ABCB1 ABCB1 ABC20, CD243, GP170,

“multidrug resistance
protein 1”, P-gp

ATP-binding cassette, sub-family B (MDR/TAP), member 1 ABCB1 7q21.12

t1:57 ABCB4 ABCB4 GBD1, MDR2, PFIC-3 ATP-binding cassette, sub-family B (MDR/TAP), member 4 ABCB4 7q21
t1:58 ABCB11 ABCB11 ABC16, PFIC-2, PGY4, SPGP ATP-binding cassette, sub-family B (MDR/TAP), member 11 ABCB11 2q24
t1:59 ABCC1 ABCC1 GS-X ATP-binding cassette, sub-family C (CFTR/MRP), member 1 ABCC1 16p13.1
t1:60 ABCC3 ABCC3 cMOAT2, EST90757, MLP2,

MOAT-D, MRP3
ATP-binding cassette, sub-family C (CFTR/MRP), member 3 ABCC3 17q21

t1:61 ABCC5 ABCC5 EST277145, MOAT-C,
MRP5, SMRP

ATP-binding cassette, sub-family C (CFTR/MRP), member 5 ABCC5 3q27

t1:62 ABCC6 ABCC6 EST349056, MLP1,
MRP6, URG7

ATP-binding cassette, sub-family C (CFTR/MRP), member 6 ABCC6 16p13.11

t1:63 ABCC7 CFTR ABC35, CFTR/MRP, dJ760C5.1,
MRP7, TNR-CFTR

Cystic fibrosis transmembrane conductance regulator
(ATP-binding cassette sub-family C, member 7)

ABCC7 7q31-q32

t1:64 ABCC8 ABCC8 ABC36, HHF1, HI, MRP8, PHHI,
SUR1, TNDM2

ATP-binding cassette, sub-family C (CFTR/MRP), member 8 ABCC8 11p15.1

t1:65 ABCC10 ABCC10 EST182763, MRP7, SIMRP7 ATP-binding cassette, sub-family C (CFTR/MRP), member 10 ABCC10 6p12.3
t1:66 ABCG2 ABCG2 ABCP, BCRP, CD338,

EST157481, MXR
ATP-binding cassette, sub-family G (WHITE), member 2
(Junior blood group)

ABCG2 4q22.1
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Table 1 (continued)

Channel
type

Hgnc
name

Iuphar
name

Alternative names Full name Gene
name

Chromosome
location

t1:67 Transporters SLC10A2 SLC10A2 ASBT, ISBT Solute carrier family 10 (sodium/bile acid cotransporter),
member 2

SLC10A2 13q33

t1:68 SLC7A1 SLC7A1 CAT-1, HCAT1, REC1L Solute carrier family 7 (cationic amino acid transporter,
y + system), member 1

SLC7A1 13q12.3

t1:69 SLC11A2 DMT1 DCT1 Solute carrier family 11 (proton-coupled divalent metal ion
transporter), member 2

SLC11A2 12q13

t1:70 SLC2A1 SLC2A1 GLUT, GLUT1 Solute carrier family 2 (facilitated glucose transporter), member 1 SLC2A1 1p34.2
t1:71 SLC2A3 SLC2A3 GLUT3 Solute carrier family 2 (facilitated glucose transporter), member 3 SLC2A3 12p13.3
t1:72 SLC2A4 SLC2A4 GLUT4 Solute carrier family 2 (facilitated glucose transporter), member 4 SLC2A4 17p13
t1:73 SLC2A8 SLC2A8 GLUT8, GLUTX1 Solute carrier family 2 (facilitated glucose transporter), member 8 SLC2A8 9q33.3
t1:74 SLC2A9 SLC2A9 GLUT9, GLUTX, URATv1 Solute carrier family 2 (facilitated glucose transporter), member 9 SLC2A9 4p16.1
t1:75 SLC29A1 SLC29A1 ENT1 Solute carrier family 29 (equilibrative nucleoside transporter),

member 1
SLC29A1 6p21.1

t1:76 HVCN1 Hv1 MGC15619, VSOP Hydrogen voltage-gated channel 1 HVCN1 12q24.11
t1:77 SLC7A5 SLC7A5 CD98, D16S469E, E16,

LAT1, MPE16
Solute carrier family 7 (amino acid transporter light chain, L
system), member 5

SLC7A5 16q24.3

t1:78 SLC16A3 SLC16A3 FGFMCT3, MCT4 Solute carrier family 16 (monocarboxylate transporter), member 3 SLC16A3 17q25.3
t1:79 SLC22A7 SLC22A7 NLT, OAT2 Solute carrier family 22 (organic anion transporter), member 7 SLC22A7 6p21.1
t1:80 SLC3A2 4F2hc 4 F2, 4F2HC, 4T2HC,

CD98HC, NACAE
Solute carrier family 3 (amino acid transporter heavy chain),
member 2

SLC3A2 11q12-q22

t1:81 SLC5A5 NIS NIS Solute carrier family 5 (sodium/iodide cotransporter) member 5 SLC5A5 19p13.11
t1:82 SLC5A8 SMCT1 AIT Solute carrier family 5 (sodium/monocarboxylate cotransporter),

member 8
SLC5A8 12q23.1

t1:83 SLC9A1 SLC9A1 APNH,NHE1 Solute carrier family 9, subfamily A (NHE, cation proton
antiporter 1) member 1

SLC9A1 1p36.1-p35

t1:84 SLC16A1 SLC16A1 MCT1 Solute carrier family 16 (monocarboxylate transporter), member 1 SLC16A1 1p21
t1:85 SLC22A1 SLC22A1 OCT1 Solute carrier family 22 (organic cation transporter), member 1 SLC22A1 6q25.3
t1:86 SLC22A2 SLC22A2 OCT2 Solute carrier family 22 (organic cation transporter), member 2 SLC22A2 6q25.3
t1:87 SLC22A3 SLC22A3 EMT, OCT3 Solute carrier family 22 (organic cation transporter), member 3 SLC22A3 6q25.3
t1:88 SLC22A11 SLC22A11 OAT4 Solute carrier family 22 (organic anion/urate transporter),

member 11
SLC22A11 11q13.3

t1:89 SLC28A1 SLC28A1 CNT1 Solute carrier family 28 (concentrative nucleoside transporter),
member 1

SLC28A1 15q25.3

t1:90 SLC28A3 SLC28A3 CNT3 Solute carrier family 28 (concentrative nucleoside transporter),
member 3

SLC28A3 9q21.33

t1:91 SLC29A3 SLC29A3 ENT3, FLJ11160 Solute carrier family 29 (equilibrative nucleoside transporter),
member 3

SLC29A3 10q22.2

t1:92 CHRNA5 α5 acetylcholine receptor,
nicotinic, alpha 5 (neuronal)

Cholinergic receptor, nicotinic, alpha 5 (neuronal) CHRNA5 15q24

t1:93 CHRNA7 α7 acetylcholine receptor,
nicotinic, alpha 7 (neuronal)

Cholinergic receptor, nicotinic, alpha 7 (neuronal) CHRNA7 15q13.3

t1:94 CHRNA9 α9 acetylcholine receptor, nicotinic,
alpha 9 (neuronal), NACHRA9

Cholinergic receptor, nicotinic, alpha 9 (neuronal) CHRNA9 4p14
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correlatedwith lymphnodemetastases [9]. On the contrary, the expres-
sion of KCa3.1 (KCNN4) channels positively correlates with high grade
tumors which arise from lymph node negative cases [8]. Finally, K2P9.1
(KCNK9), a member of the K2P family (i.e. a large family of 15members
which regulates outward K+ background currents in mammalian cells)
was considered a potential proto-oncogene, since genomic amplifica-
tion of the gene was detected in 10% of BC [50]. Although the Authors
showed that 44% of BC samples expressed the protein, they did not
look for any clinico-pathological association. Another member of the
K2P family, K2P5.1 (KCNK5), was shown to be induced by estrogens in
ER-positive BC cells and was proposed as a therapeutic target for ER-
positive BC patients [10].

The voltage-gated sodium channels (VGSC)were one of thefirst chan-
nels to be demonstratedmis-expressed in BC. In particular, the predom-
inant VGSC in BC is the “neonatal” splice variant of SCN5A (nNaV1.5). It
was shown thatNav 1.5 (SCN5A) activity could promotemetastatization
[17,18,21]; consistently, the nNAv1.5 was up-regulated inmetastatic BC
samples [17–20]. On the whole, VGSC and in particular nNav1.5 could
represent a good specific target for BC treatment.

BC is characterized by the alteration of many different calcium chan-
nels (reviewed by [51]) and calcium signal remodeling shows differences
among BC subtypes, and could hence be exploited for treatment. For ex-
ample, the secretory pathway Ca2+ ATPase I isoform (SPCA1, ATP2C1) is
significantly elevated in basal-like BCs, and silencing of SPCA1 (ATP2C1)
in the basal-like BC cell line MDA-MB-231 reduces proliferation [24].
Please cite this article as: E. Lastraioli, et al., Ion channel expression as
dx.doi.org/10.1016/j.bbamem.2014.12.016
On the other hand, overexpression of the calcium efflux pump PMCA2
(ATP2B2) is more associated with HER2 receptor positive BCs [25].
Many functional studies have shown that voltage gated calcium channels
(VGCC), mainly of the T-type to regulate BC cell proliferation (see
Table 2). In this context, it is however intriguing the finding that mRNA
levels of the voltage gated Ca2+ channel subunit encoded by the
gene CACNA2D3 (α2δ3 subunit) is generally up-regulated in BC, but is
reduced in some metastatic breast cancers [23]. How down-regulation
of CACNA2D3 could contribute to the development of metastasis of BC
is unclear and changes in CACNA2D3 levels may not be a causative factor
in metastasis. One of the mechanisms could be the promotion of a re-
modeling of Ca2+ homeostasis, through compensatory up-regulation of
other calcium transporters. This could result in an enhanced migration
or invasion capacity and/or an altered sensitivity to apoptotic stimuli.

In linewith this hypothesis, several transient receptor potential (TRP)
channels turned out to be over-expressed in BC [26,28–33]. For example,
the TRPM7 protein displays high immunohistochemical levels in
BC, and such over expression is a feature of high grade and highly
proliferative BC [35]. More recent studies suggest that TRPM7 may be
particularly important in BC metastasis: high levels of TRPM7 mRNA
are indeed predictive of poor survival and of the occurrence of distant
metastases [34]. Another member of the TRP family, TRPV6, turned
out to beup-regulated in andPgR andER-negative BCs [28]. Two succes-
sive studies confirmed the occurrence of elevated levels of TRPV6 in a
subset of ductal BC biopsies [31]. BCs with high TRPV6 mRNA levels
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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t2:1 Table 2
t2:2 Ion channels and transporters expressed in breast cancer. + = expressed, ++= overexpressed.

t2:3 Channel type Name Expression (cell lines) Function (cell lines) Expression (primary tumors) Clinical correlations

t2:4 Potassium KCNMA1 Estrogen receptors [4], Brain metastases [5];
high stage, high grade, high proliferation,
poor prognosis [6]

t2:5 KCNN4 + [7] High grade with negative lymphnodes [8]
t2:6 KCNJ3 Apical localization [9] Lymphnode metastases [9]
t2:7 KCNK5 Induced by estrogen in

ERα-positive cell lines [10]
t2:8 KCNK9 ++ [11]
t2:9 KCNH1 + [12] Modulated in cell cycle,

proliferation [12]
++ [13] Association with vitamin D receptor in

invasive ductal carcinomas [14]
t2:10 KCNH2 KCNH2 current is

blocked by Tamoxifen [15];
Induction of cell
senescence [16]

t2:11 Sodium SCN5A ++ [17,18] Predominance of nNav 1.5 [17–20] Metastases, Potential target (since it is
exclusively expressed in BC) [17,18,21]

t2:12 Calcium CACNA2D + [22]; higher
methylation levels [23]

Cell proliferation [22] Reduced mRNA levels in metastatic
BC [23]

Methylation is a potential marker of
metastases' development [23]

t2:13 ATP2C1 + [24] Cell proliferation [24] ++ in basal-like [24]
t2:14 ATP2B2 ++ in HER2-positive BC [25]
t2:15 TRPM8 ++ [26] Low grade, ER positivity [27]
t2:16 TRPV6 Gene amplification [28,29] ++ in basal-like and HER2 [29]; ++[30] Poor prognosis [29], potential therapeutic

target [29,31]
t2:17 TRPC1 ++ [31]
t2:18 TRPC3 ++ [32]
t2:19 TRPC6 + [33] Cell proliferation [33] ++ [31,33]
t2:20 TRPM7 ++ [32] Poor outcome and metastatization [34],

high grade, high proliferation [35]
t2:21 TRPV4 Migration of BC-derived

endothelial cells [36]
t2:22 ORAI 1 ++ in basal-like BC [37] Poor prognosis, agressivness, metastses [37]
t2:23 ORAI 3 + [38] Cell growth and

invasiveness [38]
+ in ER-positive BC [38] Potential novel target for ER-positive

BC [39]
t2:24 Chloride ANO1 ++ [40] ++ [40] Amplification correlates with grading

and poor outcome [40]
t2:25 CLCA2 -Tumor suppressor [41]
t2:26 Aquaporins AQP1 ++ correlation with CK14 expression,

smooth muscle actin expression [42]
Grading, histology in basal-like BC [42]

t2:27 AQP5 + [43] Diffused expression with polarity loss [43]
t2:28 Transporters SLC16A1 ++ [44] Basal like histology, high grade [44]
t2:29 HVCN1 ++ [45] ++ in metastatic BC [45] Poor survival [45]
t2:30 SLC9A1 ++ [46] Metastasis [46]
t2:31 SLC5A5 + [47]
t2:32 CHRNA9 ++ [48] Increased after nicotine

exposure [49]
++ [48]
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ER-negative and associated with poorer survival [29]. TRPV6 may also
be a potential therapeutic target as suggested by in vitro data [29]. On
the contrary, TRPC1 whose levels are high in BCs with low proliferation
capacity, may not be the optimal target for therapies against aggressive
BCs [31]. Similarly, TRPM8 overexpression is more common in ER-
positive and well-differentiated lower grade BCs [27]. Finally, signifi-
cantly elevated (up to 200-fold) mRNA levels of TRPC6 were shown in
BC samples comparedwith paired control samples [31,33], but no corre-
lations with clinico-pathological features emerged [31]. Two members
of the SOC3 family, ORA1 and STIM1 are remodeled in BC. Both ORAI1
and STIM1 were up-regulated in the poor prognosis basal-like subtype
of BC [37]. Basal-like BCs show lower levels of its related isoform
STIM2. In general, BCs with a high level of STIM1 and a low level of
STIM2 are associated with a significantly poorer prognosis, suggesting
that a remodeling of store-operated Ca2+ entry may be a feature of
BCs with greater aggressiveness and metastatic potential [37]. ORAI1
is not the only ORAI isoform to be linked to BC: ORAI3 has recently
been associated with ER- positive BC [38] and could represent a novel
target for ER- positive BCs [39].

Finally, AQP1 is expressed in BC and positively correlates with grad-
ing, histology, CK14 expression, smooth muscle actin expression, basal-
281

282

2833 SOC: Store-operated calcium channels.

Please cite this article as: E. Lastraioli, et al., Ion channel expression as
dx.doi.org/10.1016/j.bbamem.2014.12.016
like group and poor outcome, whereas it has significant negative corre-
lation with ER status [42]. Similarly, the expression of the SLC16A1
monocarboxylate transporter (encoded by the SLC16A1 gene), alone
or in conjunction with CD147, is associated to basal-like subtype,
high histological grade, absence of ER and PR expression, CK5, CK14,
vimentin and Ki67 expression. The combination of AQP1 and SLC16A1
has been proposed to be an important regulator of tumor aggressive-
ness in BC [44]. Also the voltage-gated proton channel Hv1 (HVCN1)
is overexpressed in metastatic BC and high Hv1 (HVCN1) levels corre-
late with disease progression and poor outcome [45].

In a recent paper [52], an ICT molecular profile was defined for BC
thus opening interesting perspectives in this field. In this study, 280
ion channel genes were collected for this study and eight independent
microarray BC datasets from Singapore (SIN), France (FRA), Germany
(GER), Netherlands (NED), Sweden (SWE), Taiwan (TWN) and the
United States (USA 1 and USA2) were analyzed. Firstly, the Authors
explored the difference in ion channel gene expression between p53
mutant andwild-type breast tumors in the discovery SIN cohort. Collec-
tively, 22 ion channel genes were identified differentially expressed be-
tween the two groups: 5 ion channel genes were upregulated in p53
mutant tumors and 17 were downregulated. Similar results were
obtained in the FRA cohort. Secondly, the ion channel genes that were
differentially expressed between ER-positive and -negative BC patients
were identified. In SIN cohort 24 ion channel genes were identified as dif-
ferentially expressedbetween the twogroups: 16geneswereupregulated
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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t3:1 Table 3
t3:2 Ion channels and transporters expressed in prostate cancer. + = expressed, ++= overexpressed.

t3:3 Channel type Name Expression
(cell lines)

Function (cell lines) Expression (primary tumors) Clinical correlations

t3:4 Potassium KCNA3 ++ [54] Grading [54]
t3:5 KCNMA1 ++[55] Cell proliferation [55] Amplification in late stage tumors [56]
t3:6 KCNN4 Induce calcium entry through TRPV6 [57] ++ Gleason score 5-6, −− in score 8-9 [58]
t3:7 KCNK2 Potential molecular target [59]
t3:8 Sodium SCN9A ++ [60] Migration and metastatic potential [60] Potential marker [61]
t3:9 Calcium TRPC1 ++ [62] Transient knockdown reduces growth

arrest [62]
t3:10 TRPV6 ++ [63] Gleason score [63]
t3:11 TRPM8 + [64,65] Androgen independence, poor prognosis [64,65]
t3:12 CACNA1H ++ [66] Cell proliferation [66]
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in ER positive patients while 8 genes were downregulated. Nineteen out
of these 24 genes overlapped with the genes differentially expressed be-
tween p53 mutant and wild-type tumors. Among these common genes,
all downregulated genes in ER positive patients were upregulated in p53
mutant and vice versa. The direction of diverse expression in the SIN co-
hort was consistent with that in the FRA, USA1 and USA2 cohorts. Thirdly,
the relationship between ion channel gene expression and histological
tumor grade was investigated. The expression of 30 ion channel genes
was found to be significantly correlated with tumor grade. Since a large
overlap between the three differentially expressed gene lists emerged,
the Authors designated these ion channel genes as the “IC30 gene
signature”.4 Finally, the performance of the IC30 signaturewas investigat-
ed, in comparisonwith clinico-pathological variables, reaching the conclu-
sion that IC30 is a robust prognostic biomarker to predict clinical outcome
in BC, and is independent of standard clinical and pathological prognostic
factors including patient age, lymph node status, tumor size, tumor grade,
ER status, and progesterone receptor status. The functional role and regu-
lation of ICTs in BC is shown in Table 2 and summarized in Figs. 1 and 2.
Interestingly, many of the IC30 genes corresponded to genes encoding
ion channelswhich already emerged in previous studies focused on single
channels or channel families.

Although neglected for some time, recent studies have begun to ex-
plore the mechanisms by which specific ICT are overexpressed in some
BC. The amplification of theKCNK9 gene at the 8 q23.4 locus justifies the
over expression of K2P9.1 (KCNK9) channels in BC. Similarly, BK overex-
pression can be traced back to the amplification of the KCNMA1 gene,
which is located at 10q22 locus, amplified also in prostate cancer. The
amplification of KCNMA1 was restricted to invasive ductal BC, and was
significantly associated with high tumor stage, high grade, high tumor
cell proliferation, and poor prognosis [6]. A similar mechanism occurs
for the calcium-activated chloride channel anoctamin 1 (CaCC, ANO1),
which is over-expressed in BC cell lines and primary BCs [40]. The
Authors showed that the chromosomal region 11q13, in which ANO1
gene is located, is frequently amplified in BC and that such amplification
correlates with grading and poor outcome [40].

One possible mechanism for the overexpression of some calcium
permeable ion channels is through the involvement of hormone recep-
tors, such as ERα (see Fig. 2). Examples areORAI3 [38] and TRPM8 levels
[27]. Conversely, TRPV4 expression is decreased by progesterone [53].
On the contrary, the amplification of the TRPV encoding gene appears
to be one potential mechanism for TRPV6overexpression in BC cell
lines and as in some BCs. Indeed, TRPV6 elevated copy number is as-
sociated with ER- negative, basal-like BCs [29]. Other mechanisms
for altered ion channel expression in BC that have not yet been fully
explored are epigenetic-mediated changes, such as gene methylation.
The gene for the voltage-gated calcium channel regulatory subunit,
374

375

376

377

378

4 IC30 is composed of: ANO1, CACNA1D, CACNA2D1, CACNA2D2, CLIC1, CLIC4, CLIC5,
CLIC6, GLRB, KCNAB2, KCND3, KCNE3, KCNE4, KCNK1, KCNMA1, KCNN4, MCOLN2,
P2RX4, PKD1, PKD2, SCN1B, SCN7A, SCNN1A, TPCN1, TPCN2, TRPC1, TRPM4, VDAC1,
VDAC2, VDAC3.
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methylation in CpG islands [23]. Furthermore, CEBPδ methylation is
associated with metastasis and when analyzed with high-resolution,
quantitative methodologies, such methylation can be predictive of
metastatic relapse.

4. Ion channels and transporters: use as cancer biomarkers in
Prostate Cancer (Pca)

PCa is, in men, the most prevalent cancer and the second-leading
cause of death [3]. Current diagnosis is based on the histological examina-
tion of prostate needle-core biopsies. Although not specific, an increased
serum PSA (prostate specific antigen) is widely used by physicians, for
deciding which patients must undergo prostate biopsies and eventually
detecting PCa. However, PSA levels may be elevated also in benign pros-
tatic hypertrophy as well as in other non-cancerous prostate conditions;
furthermore, the PSA test does not differentiate clinically significant from
indolent tumors, resulting in over-diagnosis and sometimes overtreat-
ment. There is consequently a need for novel biomarkers that aid clinical
decisionmaking. Another relevant functional aspect of PCa is the fact that
prostate is one of the androgen-sensitive tissues. Androgens act through
a specific androgen receptor (AR), which belongs to the nuclear receptor
superfamily. AR is also involved in PCa, either at initiation or during pro-
gression, through the induction of several genes.While the assessment of
androgen-dependence, through the evaluation of AR expression, is man-
datory for endocrine-based treatment, whether the AR-dependent genes
can be considered potential biomarkers for PCa deserves to be evaluated.
Finally, clinical diagnosis of PCa is currently confirmed by histopatho-
logical examination of prostate needle-biopsy among positive cases of
PSA blood test. The Gleason score (GS) is the most widely available
system for discrimination of malignancy grade in PCa, and patients
with GS over 7 have significant risks of death.

Among ICTs (Table 3), the influence of calcium channels in PCa has
been known for over 30 years, with the first observation that calcium
channel blockers affect the progression of cancer towards more aggres-
sive phase. Later research identified additional classes of channel pro-
teins having an important regulatory role and affecting malignant
transformation (reviewed in [67]). The functional role and regulation
of ICTs in PCa is shown in Table 3 and summarized in Figs. 1 and 2.
The expression of VGCC (mainly L-type) has been detected in the
androgen-responsive LNCaP cells. In these cells Ca2+ currents are acti-
vated by androgens and mediate the androgen-induced effects [68].
Part of the Ca2+ effects must depend on stimulation of K+ channels,
as blocking KCNN4 inhibits the proliferation of PCa cells [69]. Ca2+ in-
flux through TRPCs also occurs and promotes either cell proliferation
or apoptosis, depending on TRPC subtype (see Table 3). TRPM8 is espe-
cially interesting: the gene displays ten putative androgen responsive
elements [70], hence the expression and subcellular distribution of the
protein are regulated by androgens. TRPM8 also contributes to the
development of androgen independence [64] and drives metastatic
potential of PCa. Indeed abnormal levels of TRPM8mRNA are indicative
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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t4:1 Table 4
t4:2 Ion channels and transporters expressed in lung cancer. + = expressed, ++= overexpressed.

t4:3 Channel type Name Expression
(cell lines)

Function (cell lines) Expression
(primary tumors)

Clinical correlations

t4:4 Potassium KCNH2 + [74] Cell proliferation [74]
t4:5 KCNQ1 ++ [75] Tumor formation and resistance to hypoxia and serum

deprivation [75]
t4:6 gBK ++ [76] Late-stage marker [76]
t4:7 Sodium SCN9A ++[77] Cell invasiveness [77] ++[77] Potential target for therapeutic intervention and/or as a diagnostic

or prognostic marker [77]
t4:8 Calcium TRPA1 + [78] Cell survival [78] Promising target for therapeutic interventions [78]
t4:9 TRPC1 +[79] Differentiation [79]
t4:10 TRPC3 +[79] Differentiation [79]
t4:11 TRPC4 +[79] Differentiation [79]
t4:12 TRPC6 +[79] Differentiation [79]
t4:13 ORAI 3 + [80] Proliferation [80] ++ [80] High grade [80]
t4:14 Transporters CHRNA5 +[81] p.Asp398Asn polymorphism in the CHRNA5 gene is associated

with LC risk [81]
t4:15 CHRNA7 Cell proliferation, angiogenesis and

invasiveness [82]
t4:16 CHRNA9 Cell proliferation, angiogenesis and

invasiveness [82]

t5:1

t5:2

t5:3

t5:4

t5:5

t5:6

t5:7

t5:8

t5:9

t5:10

t5:11

t5:12

t5:13

t5:14

t5:15

t5:16

t5:17

t5:18

t5:19

t5:20

t5:21

t5:22

t5:23

t5:24

t5:25
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of metastatic disease [65]. Overall, TRPM8 might be a useful marker for
prostate cancer outcome, since loss of TRPM8 expression appears to be
associated to transition to androgen independence and poor prognosis
[66]. A similar behavior characterizes TRPC1, whose expression levels
decrease during the progression of PCa from androgen-dependent to
androgen-independent phase [62]. On the contrary, the expression of
TRPV6 ion channel seems to be regulated by ARs, although in an agonist
independent way. Indeed, TRPV6 expression is absent in the healthy
prostate and benign prostatic hyperplasia, while is highly expressed in
PCa specimens although with no significant differences in PCas which
progress towards androgen independence. On the other hand, TRPV6
expression levels correlate with the Gleason score and the development
of metastases [63].
U
N
C
O

R
R
E
C

Table 5
Ion channels and transporters expressed in colorectal cancer. + = expressed, ++= overexp

Channel type Name Expression
(cell lines)

Function (cell lines) Expression (p

Potassium KCNK9 + [92]
KCNC4 +[93]
KCNA3 +[94]
KCNA5 +[93]
KCNQ5 Mutation [95
KCNH1 + [93] Amplification
KCNH2 + [97,98]; Invasiveness [97]; regulation

of VEGF-A secretion [98];
Chemosensitivity [99]

++, correlati

Sodium SCN5A Cell invasion [101]; blocked by
Ropivacine [102]

Calcium CACNA ++ [102]
Chloride CLCA1 −−, lack of a

transcription
CLCA2 −− [104], ce
CLCA4 −− [105]
CLIC1 Cell migration and

invasiveness [106]
Aquaporins AQP 1 +[107] Migration [108] + early stage

AQP3 + [108] Regulated by EGF [109] ++ [109]

AQP 5 + [107] ++ [106]; Proliferation [110] + in early sta
AQP8 - [111]
AQP9

Transporters HVCN1 ++ [112] ++ [112]

SLC22A7 ++ [113]
SLC7A1
SLC2A1 -[100]
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RWork of M.B. Djamgoz and colleagues clearly showed that the
expression of VGSC, and in particular of SCN9A, in PCa is associated
with a strongmetastatic potential and its activity potentiates cell migra-
tion, crucial for the metastatic cascade [60]. This and other VGSC α-
subunits are also detected in normal prostatic tissue, but at a much
lower levels. Hence, SCN9A could be a useful diagnostic marker [61].

Several K+ channels have also been reported to be deregulated in PCa
and proposed as biomarkers: (1) Kv1.3 (KCNA3), is mainly expressed in
early stages of progression and down-regulated in high grade cancers
[54]; (2) BK channels, and in particular the novel BK(L)whose expression
is independent from the androgen level [56], (3) KCa1.1 (KCNMA1),
whose gene KCNMA1, located in 10q22 chromosome, is amplified in
late-stagehumanprostate cancers [55]. Thisfinding stresses the similarity
ressed.

rimary tumors) Clinical correlations

]
[96] Poor outcome [96]

on with invasive phenotype [97] Independent negative prognostic factor in stage I
and II CRC [100]

ssociation with c-myc
[104]
ll differentiation [105]

s and in liver metastases [108]
Lymphnode involvement, differentiation,
metastasis [109]

ges and in liver metastases [107] TNM, grading, lymphnode metastases [106,107]

Reduced levels are associated to lack of response
to adjuvant therapy in stage III CRC [117]
Poor outcome, stage, lymphnode involvement,
tumor size [112]
Predictor of response [113]
Low expression is associated with shorter DFS [114]
Independent negative prognostic factor [100]
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t6:1 Table 6
t6:2 Ion channels and transporters expressed in esophageal cancer. + = expressed, ++= overexpressed.

t6:3 Channel type Name Expression
(cell lines)

Function (cell lines) Expression (primary tumors) Clinical correlations

t6:4 Potassium KCNH1 ++ ESCC [118] Depth of invasion, independent negative prognostic
factor [118]

t6:5 KCNH2 ++ ESCC [119], EA and BE [120] Malignant progression [120]
t6:6 Calcium TRPC6 + ESCC [121] pT, staging, poor prognosis [122]
t6:7 CACNA + [123] Proliferation [123] ++ EA [123]
t6:8 Aquaporins AQP 1 ++ ESCC [124]
t6:9 AQP3 ++ ESCC [125] Coexpression of AQP3 and AQP5 is an independent

prognostic factor [125]
t6:10 AQP 5 ++ ESCC [124] Coexpression of AQP3 and AQP5 is an independent

prognostic factor [124]
t6:11 Transporters SLC2A1 ++ EA [126,127], ++ ESCC [128] Increased expression in surgically-resected EA [127],

increased expression after radiotherapy in ESCC [129]
t6:12 SLC2A3 + [127]
t6:13 SLC2A3 + [127]
t6:14 SLC2A8 ++ EA [127] Increased expression in surgically-resected EA [127]
t6:15 SLC2A9 + [127]
t6:16 ABCG2 ++ ESCC [129] Grading, TNM, metastases [129]
t6:17 SLC10A2 ++ in BE, −− in EA [131]
t6:18 SLC11A2 ++ in EA [132] Metastatization [132]
t6:19 SLC7A5 + [133] Melphalan transport [133] ++ in ESCC [134]
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between BC and PCa, and candidates KCNMA1 and its encoded protein as
one of themost promising cancer biomarkers.More recently, Altintas and
coworkers [71] published a study aimed at identifying potential bio-
markers for early diagnosis of PCa among androgen-regulated genes.
The diagnostic performances of these potential biomarkers were com-
pared to that of genes known to be associated with PCa (i.e. PCA3 and
DLX1). KCNMA1 was one of the validated genes. The Authors concluded
that it could be included in the future into a multiplex diagnostic tool.
The overexpression of the K2p channel K2p 2.1 (KCNK2) has been dem-
onstrated in PCa and it was shown that it regulates cell proliferation
[59]. The functional role and regulation of ICTs in PCa is shown in
Table 3 and summarized in Figs. 1 and 2.

Finally, a putative prostate cancer tumor suppressor gene has been
identified in the KCNRG gene, which maps on chromosome 13q14.3
and encodes for a protein with high homology to the tetramerization
domain of VGKCs [72]. Finally, Ohya and coll. [58] examined the gene
expressions of different K+ channels by real-time PCR in PCa needle-
biopsy samples belonging to different Gleason scores: the expression
of Kv1.3 (KCNA3), KCa1.1 (KCNMA1), KCa3.1 (KCNN4), and K2p 2.1
(KCNK2) markedly increased in the PCa group with Gleason score of
5–6 (GS5–6), but significantly decreased in the GS8–9 group. This ma-
lignancy grade–dependent K+-channel expression patternmay provide
a convenient marker to understand PCa progression level. Noteworthy,
some of the transcripts identified in the Ohya's study perfectly match
with those of the IC30 gene signature identified in BC.

5. Ion channels and transporters: use as cancer biomarkers in Lung
Cancer (LC)

LC is the leading cause of cancer related death worldwide, and the
5-year survival is only 15% [3]. Approximately 98% of lung cancers are
carcinomas that arise from epithelial cells. Lung carcinomas are general-
ly categorized into non-small cell lung cancers (NSCLC) and small cell
lung cancers (SCLC), characterized not only by histology and molecular
profile but also by different risk factors, prognosis and response to ther-
apy. About 80% of lung cancers are NSCLC; among these roughly 50% are
adenocarcinomas. Lung adenocarcinoma is strongly associated with
smoking; indeed lung adenocarcinoma has become the most common
major type of lung cancer in smokers compared to squamous cell carci-
noma. On the other hand, adenocarcinoma is also the type of lung can-
cermost commonly seen in non- smokers andwomen. At themolecular
level, a large number of genes have been found to be involved in lung
cancer, such as EGFR signaling pathway genes, tumor suppressor
Please cite this article as: E. Lastraioli, et al., Ion channel expression as
dx.doi.org/10.1016/j.bbamem.2014.12.016
E
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Rgenes, and cell immortalization genes. Such pathways also turned out
to determine appropriate targeted therapy protocols.

There is also mounting evidence for the active involvement of ion
channels in LC pathology, and the ligand-gated nicotinic acethylcholine
receptors (nAChRs) are by far the channel type mostly studied in LC
[73] (Table 4). Since nAChRs are potently activated by compounds
present in tobacco, such as nicotine and 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone (NKK), their potential involvement in the carci-
nogenic pathway leading to LC is quite obvious. ICTs expressed in LC
are summarized in Table 4 and Fig. 1 while the regulation of ICTs by
hormones and growth factors is summarized in Fig. 2.

Most data concern NSCLC human surgical samples which show
altered expression of nicotinic subunits (mainly α1, α5 and α7) com-
pared to normal tissue. Differences are also observed between smokers
and non-smokers [83]. Moreover NSCLC cells are subjected to the
mitogenic effects of nicotine (see Fig. 2), apparently mediated by α7-
containing nAChRs [82], which are thus emerging targets for therapy.
Multiple genome-wide association studies (GWAS) have implicated
the 15q25 nAChR gene cluster CHRNA5-A3-B4 in nicotine dependence
and lung cancer [84]. Falvella et al. showed that the expression of the
CHRNA5 gene which encodes the α5-nAchR was increased in LC tissue
and that the p.Asp398Asn polymorphism (reference id NCBI 1000
Genomes Browser: rs201177696) in the CHRNA5 gene is associated
with LC risk [81]. The asparagine risk allele is associated with decreased
maximal response to agonists, indicating altered receptor function [85].
Additionally, the genotype in this locus appears to correlate withmRNA
levels suggesting that the p.Asp398Asn polymorphism may influence
α5 (CHRNA5) expression as well [81]. More recently, the expression
ofα5-nAchRwas found to be correlatedwith that of the hypoxia induc-
ible factor (HIF) 1α in NSCLC [86]. Aα5-nAChR/HIF-1α/VEGF axis exists
in LC and is involved in nicotine-induced tumor cell proliferation. This
fact suggests that α5-nAChR may serve as a potential anticancer target
in nicotine-associated LC [86].

Other channels expressed in LC are the VGCC and the two pore K+

channels. One of them, Kv7.1 (KCNQ1) is over-expressed in more than
35% of lung tumors and its over expression promoted tumor formation
and conferred resistance to hypoxia and serum deprivation [75].
Also, Kv11.1 (KCNH2) channels are expressed in LG cell lines and
regulate cell proliferation [74]. Furthermore, late-stage human SCLC
tissues strongly expressed glioma Big Potassium Channel (gBK) mRNA
(encoded by the hSlo gene) at difference from normal lung tissue
and early, lower stage SCLC resected tissues. Immunofluorescence
confirmed that SCLC cells taken at the time of the autopsy intensely
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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t7:1 Table 7
t7:2 Ion channels and transporters expressed in pancreatic cancer. + = expressed, ++= overexpressed.

t7:3 Channel type Name Expression (cell lines) Function (cell lines) Expression (primary tumors) Clinical correlations

t7:4 Potassium KCNJ3 ++ [139] ++ [139]
t7:5 KCNN4 ++ [140] ++ [140]
t7:6 KCNA3 Downregulation [139] Metastases [139]
t7:7 Calcium TRPV1 ++ [141] Cancer pain [141]
t7:8 TRPM7 ++ [142] Cell proliferation [142]
t7:9 TRPM8 ++ [143] Cell proliferation [143]
t7:10 ORAI 1 ++ [144] Cell survival [144]
t7:11 Chloride CLIC3 ++ [145] Poor prognosis [145]
t7:12 ANO1 ++ [146] Cell proliferation [146]
t7:13 Transporters SLC9A1 ++ [147] Cell invasiveness [147]
t7:14 ABCB4 Upregulation [148] Poor response to therapy [148]
t7:15 ABCB11 Upregulation [148] Poor response to therapy [148]
t7:16 ABCC1 Upregulation [148] Poor response to therapy [148]
t7:17 ABCC3 Upregulation [148] Poor response to therapy [148]
t7:18 ABCC5 Upregulation [148] Poor response to therapy [148]
t7:19 ABCC10 Upregulation [148] Poor response to therapy [148]
t7:20 ABCG2 Upregulation [148] Poor response to therapy [148]
t7:21 ABCA3 Downregulation [148] Poor response to therapy [148]
t7:22 ABCC6 Downregulation [148] Poor response to therapy [148]
t7:23 ABCC7 Downregulation [148] Poor response to therapy [148]
t7:24 ABCC8 Downregulation [148] Poor response to therapy [148]
t7:25 SLC7A5 + [149] Stage, size, Ki-67, VEGF, CD34,

p53 and CD98, poor prognosis [149]
t7:26 SLC22A3 Upregulation [150] Positive prognostic factor [150]
t7:27 SLC22A18 Upregulation [150]
t7:28 SLC22A1 Downregulation [150]
t7:29 SLC22A2 Downregulation [150]
t7:30 SLC22A11 Downregulation [150]
t7:31 SLC28A1 Downregulation [150] Poor prognosis [150]
t7:32 SLC28A3 Downregulation [150]
t7:33 SLC29A1 Downregulation [150]
t7:34 SLC5A8 Loss [151] Loss associated with poor prognosis [151]
t7:35 SLC29A1 Gemcitabine effects prediction in endoscopic

samples from non-resectable PDAC patients [152]
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displayed this protein. Therefore, gBKmay represent a late-stage marker
for SCLC [76].

VGSCs are also expressed in NSCLC cells, with a possible role in the
regulation of tumor cell invasiveness. A recent paper [77] evidenced
an interesting relationship between EGFR signaling and SCN9A in
NSCLC cells. In particular, the Authors showed an EGFR-mediated up-
regulation of SCN9A (through a transcriptional regulation of channel
expression), which is necessary for the invasive behavior of LC cells.
IHC of patients' biopsies confirmed the clinical relevance of SCN9A
expression in NSCLC. Hence, SCN9A has significant potential as a new
target for therapeutic intervention and/or as a prognostic marker in
NSCLC.

The expression of TRPA1 was also significantly higher in tumor
samples of SCLC patients compared to NSCLC tumor samples or non-
malignant lung tissue. TRPA1 played a pivotal role for SCLC cell survival
and could therefore represent a promising target for therapeutic inter-
ventions [78].

More recently a transcriptomic analysis was done to compare the
expression of ion channel encoding genes between normal and tumor
tissues in patients with lung adenocarcinoma. 37 ion channels genes
were identified as being differentially expressed between the two
groups.5 To investigate the prognostic power of such ion channels
genes a risk score was assigned to each patient, based on the expression
of the differentially expressed genes. The risk score effectively predicted
overall survival and recurrence-free survival in lung adenocarcinoma.
The risk score for ever-smokers was higher than those for never-
smokers. Multivariate analysis indicated that the risk score was a signif-
icant prognostic factor for survival independent of patients' age, gender,
5 ANO1, CACNA1C, CACNA1D, CACNA2D2, CACNB3, CLCC1, CLCN3, CLCN7, CLIC3, CLIC4,
CLIC5, CLIC6, KCNAB1, KCNAB2, KCNJ2, KCNJ8, KCNE4, KCNK1, KCNK3, KCNK5, KCNQ3,
KCNT2, MCOLN1, MCOLN2, MCOLN3, PKD1, PKD2, SCN4B, SCN7A, SCNN1B, SCNN1G,
TPCN1, TRPC1, TRPC6, TRPM2, TRPV2, VDAC1.

Please cite this article as: E. Lastraioli, et al., Ion channel expression as
dx.doi.org/10.1016/j.bbamem.2014.12.016
stage, smoking history, Myc level and EGFR/KRAS/ALK gene mutation
status. Finally, 31 channel genes were identified as being differentially
expressed between adenocarcinoma and squamous-cell carcinoma
samples. Hence ion channel gene expression can be used to improve
subtype classification in NSCLC at the molecular level [87]. Following
this line of studies, a gene expression meta-analysis study of surgically
resected NSCLC using 602 individual expression profiles, led to identify
the voltage-dependent anion channel type 1 (VDAC1)6 as one of the
most relevant genes. In particular, VDAC1 was associated with shorter
overall survival and turned out to be an independent prognostic factor
compared to histology, gender, age, nodal status and tumor grade
[88]. Subsequently, VDAC1 was found to be up-regulated in several
types of carcinomas [89]. Overall, VDAC1 represents a promising prog-
nostic biomarker which may help in identifying patients at higher risk
of recurrence.
6. Ion channels and transporters: use as cancer biomarkers in
Colorectal Cancer (CRC)

Although the prognosis of CRC patients consistently improved during
the last decades due to important achievements in prevention, early
diagnosis and therapy, CRC still represents the fourth most common
cause of death for cancer worldwide. The 5-year survival rate is higher
than 60%, when taking into account CRC encompassing all the patholog-
ical stages [90]. Indeed, the TNM staging system, which comprises seven
stages,7 is highly correlatedwith prognosis, with a 5-year survival of 90%
6 The voltage-dependent anion channel type 1 (VDAC1) is a component of the mito-
chondrial permeability transition pore, which regulates ATP/ADP exchange.

7 TNM stage I: T1-T2, N0, M0; TNM stage IIA: T3, N0, M0; TNM stage IIB: T4a, N0, M0;
TNM stage IIC: T4b, N0, M0; TNM stage IIIA: T1-T2, N1, M0 and T1, N2a, M0; TNM stage
IIIB: T3-T4a, N1, M0 or T2-T3, N2a, M0 or T1-T2, N2b, M0; TNM stage IV A: Any T, Any
N, M1a and Any T, Any N, M1b. (AJCC Cancer Staging System 7th Edition, 2010).

promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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t8:1 Table 8
t8:2 Ion channels and transporters expressed in gastric cancer. + = expressed, ++= overexpressed.

t8:3 Channel type Name Expression
(cell lines)

Function (cell lines) Expression
(primary tumors)

Clinical correlations

t8:4 Potassium KCNH2 ++ [157–159] Cell proliferation [157];
Apoptosis [159]

++ [160–162] Grading, TNM stage, serosal and venous invasion [160,161];
Lauren's intestinal type, fundus localization, low grading and
early (TNM I and II) stages [162]; in early stage, T1 patients,
KCNH2 expression identified high risk patients [162]

t8:5 Calcium CACNA2D3 ++ [163] CACNA2D3 methylation level correlates with Lauren's diffuse
type and with shorter survival time [163]

t8:6 Chloride CLIC1 ++ [164] Cell proliferation, apoptosis,
invasion and migration [164]

++ [165] Lymph node involvement, stage, lymphatic and perineural
invasion, poor prognosis [165]

t8:7 Aquaporins AQP3 ++ [166] Lymph node involvement [166]
t8:8 AQP5 + [167] Lauren's intestinal type, lymph node involvement [167]
t8:9 Transporters SLC7A5 ++ [168] TNM stage, size, lymph node involvement, local invasion [168]
t8:10 SLC16A3 Down-regulation [169] Advanced stage, metastases, Lauren's intestinal type [169]
t8:11 SLC3A2 ++ [170] ++ [170] Inverse correlation with differentiation [171]
t8:12 ABCB1 ++ [170] ++ [171] Lauren intestinal type [171]
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for patients in earlier stages to less than 25% for those with metastatic
disease. Themolecular pathogenesis of CRC has been almost established,
with the identification of mis-expression andmutation of several genes.
Someof them representmolecularmarkers currently used for prognosis,
therapy and response to therapy. For example the k-rasmutation profile
is used to refine prognosis and to select patients who will benefit from
treatment with anti-EGFR antibodies.

Potassium channels, especially the voltage-gated K+ channels
(VGKC) appear to exert a pleiotropic role in colorectal cancer (reviewed
in [91]) (see Table 5 and Fig. 1). In primary human samples, the tran-
scripts of KCNA3, KCNA5, KCNC1, KCNH1 [13,94,96], KCNH2 [97] and
KCNK9 [92] have been detected. The clinical relevance depends on the
fact that genomic amplification of KV 10.1 is an independent marker of
adverse prognosis [96]. High Kv11.1 (KCNH2) expression levels in
primary CRC not only correlate with an invasive phenotype [97] but
represent an independent negative prognostic factor in TNM I and II
CRC when associated with Glut-1 absence [100]. Kv11.1 (KCNH2) levels
were also associated with chemosensitivity for different drugs (paclitax-
el, vincristine, hydroxy-camptothecin). Such sensitivity was modulated
by the antibiotic erythromycin which, noteworthy, is able to inhibit
Kv11.1 (KCNH2) currents [99]. Moreover, a negative correlation was ob-
served betweenKv11.1 (KCNH2) expression and tumor chemosensitivity
to doxorubicin [99]. One of the mechanisms explaining Kv11.1 (KCNH2)
function in CRC could be its capability to modulate VEGF-A secretion in
CRC. This occurs through a novel signaling pathway centered on integrin
adhesion receptors [98]. Consistently, blocking Kv11.1 (KCNH2) in vivo
impairs tumor growth, angiogenesis and metastases formation.

As described above, VGSC have been implicated in the metastatic
potential of human breast, prostate and lung cancer. More recently,
the SCN5A gene, encoding the VGSC Nav 1.5 (SCN5A), has been studied
in CRC [101]. The clinical relevance of Nav 1.5 (SCN5A) expression was
established by IHC in patients' biopsies, and a strong staining of the
Nav 1.5 (SCN5A) was found in CRC specimens compared to matched-
paired normal colon tissues. Themechanismof VGSC-mediated invasive
potential was discovered through a probabilistic modeling of loss-of-
function screens and microarray data: SCNA5 turned out to be a high
level regulator of a CRC invasion network, involving genes that encom-
pass Wnt signaling, cell migration, ectoderm development, response to
biotic stimulus, steroid metabolic process and cell cycle control. CRC
cells were found to express both adult and neonatal Nav 1.5 (SCN5A)
variants, as in BC. Ropivacaine, a local anesthetic frequently used to
provide analgesia during tumor resection, caused a concentration-
dependent block of both Nav 1.5 (SCN5A) variants; consistently,
ropivacaine inhibited CRC cell invasion. On the whole, ropivacaine
may be beneficial during surgical CRC excision [102].

A recent work investigated the mechanism leading to channels de-
regulation in CRC, analyzing the genes which are mutated at significant
frequency, in a subset of human CRC samples. KCNQ5 turned out to be
Please cite this article as: E. Lastraioli, et al., Ion channel expression as
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Ofrequently mutated [95], whereas SCN3b (encoding the β subunit of
the type III VGSC) and KCTD15 (K+ channel tetramerization domain
15) were among the genes synergistically controlled by the mutant
p53 and Kras, typical oncogenes of murine and human colon cancers
[115]. Finally, recent multicenter study identified two single nucleotide
polymorphisms of VGSC genes (the intron SNP SCN4A-rs2302237 and
the SCN10A-rs12632942 SNP that were associated with oxaliplatin-
induced peripheral neuropathy development [116].

Among Cl− channel-related proteins, it has been shown that chloride
channel accessory 1 and 2 genes (CLCA1 and CLCA2) transcripts show
widespread downregulation in CRC patients [105]. Therefore CLCA
proteins could be tumor suppressors in CRC in analogy with what
occurs in BC.

The expression of Aquaporins has also been studied in CRC: AQP1,
AQP3 and AQP5 are expressed in CRC cell lines. AQP1 and AQP5 have
also been detected in primary CRC. Both turned out to be expressed
early during CRC progression but were also present in liver metastases
[107]. AQP5 over-expression in CRC samples was associated with TNM
stage, grading and lymph node involvement [106]. AQP3 is also over-
expressed in primary CRCwith respect to healthy tissue, and its expres-
sion is positively regulated by EGF and is associated with lymph node
involvement, metastasis and differentiation [109]. A recent microarray-
based study demonstrated that reduced AQP9 gene expression is related
to absence of adjuvant chemotherapy response in CRC patients [118].
Another putative predictive factor could be SLC22A7,whose high expres-
sion is an independent predictor of response to fluoropyrimidine -based
chemotherapy in CRC patients [113].

Hv1 (HVCN1) is also over-expressed in CRC samples while absent in
normal and hyperplastic colon and its expression correlates with poor
outcome, stage, lymph node involvement and tumor size [112]. Finally,
in stage I-III CRC patients, a low expression of the cationic amino-acid
transporters-1 (SLC7A1, encoded by SLC7A1 gene) is associated with
shorter time of metastases-free survival [114].

7. Ion channels and transporters: use as cancer biomarkers in
Esophageal Cancer (EC)

EC represents the sixth leading cause of mortality from cancer
worldwide, its incidence is increasing and survival is still poor despite
recent advances in treatment [3]. The unsatisfactory results are mainly
related to late diagnosis and complex multimodal therapeutic ap-
proaches. From a histopathological point of view, two types of cancer
are the most frequent: squamous-cell carcinoma (ESCC) and adenocar-
cinoma (EA), with some differences in geographic prevalence and risk
factors. For example, Barrett's Esophagus (BE) represents a precursor
lesion for EA. Although BE progression towards true invasive cancer
is not frequent, it represents a serious clinical problem, requesting
frequent patients' endoscopic surveillance.
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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Among VGKCs two members of the KCNH family were analyzed
and completely different patterns of expression were found: Kv10.1
(KCNH1) was expressed in ESCC compared with the corresponding
normal tissue, the protein was associated with depth of invasion and
was an independent negative prognostic factor [118]. On the contrary,
Kv11.1 (KCNH2) potassium channels were shown to be expressed
in precancerous lesions (BE, dysplasia) as well as in EA [120]. In
the same paper, it was demonstrated that the Kv11.1 (KCNH2) channel
is significantly associated with malignant progression towards EA
[120]. Kv11.1 (KCNH2) channels are also overexpressed in ESCC sam-
ples, but no statistically significant correlations emerged with clinico-
pathological characteristics. Nevertheless, Kv11.1 (KCNH2) expression
negatively affects patients' survival [119].

Other channel types are expressed and functional in EC cells (see
Table 6). Among them, TRPC6 is overexpressed in ESCC with respect
to normal esophageal tissue at both protein and mRNA levels [121]. A
recent report evidenced correlations of TRPC6 with T and staging and
an association between TRPC6 mRNA and poor prognosis [122].

Among Aquaporins, it was demonstrated that AQP3 is expressed
in ESCC with respect to normal esophageal tissue [125]. Both AQP3
and AQP5 are located on the cell membrane of ESCC cells with higher
expression respect to the surrounding normal tissue [124]. The si-
multaneous expression of the two AQP was correlated with clinico-
pathological features. When considered separately, the two proteins
did not have a prognostic relevance whereas their co-expression was
an independent prognostic negative factor for ESCC patients.

Long ago it was demonstrated that the Glucose Transporter 1
(SLC2A1, GLUT1) is expressed in BE-derived tumors and that such ex-
pression represents a late event in the carcinogenetic process [126].
SLC2A1 expression also occurs in ESCC, where it represents a marker
of poor prognosis [128]. Moreover, SLC2A1 expression was increased
after radiotherapy in ESCC patients [129]. More recently, it was shown
that EAs express several GLUT proteins, besides SLC2A1 although at dif-
ferent levels [127]: SLC2A3, SLC2A4, SLC2A8 and SLC2A9.In particular,
patients who underwent surgery as first line treatment showed higher
SLC2A1 and SLC2A8 levels.

One of themain causes of chemotherapy failure is drug effluxmedi-
ated by ATP-binding cassette transporters (ABC) [135]. It was recently
shown that ABCG2 together with V-ATPase are overexpressed in ESCC
and that the expression of the two proteins correlates with grading,
TNM stage and metastatization [130].

The apical sodium-dependent bile acid transporters (SLC10A2),
whichmediate bile acid transport [136], are not expressed in the normal
squamous epithelium of the esophagus [137], whereas their expression
increases in Barrett's Esophagus, to decline in EA [131].

Among risk factors for EC, it has been proposed that iron might be
important in the pathogenesis of such tumor. In this view it was
shown that various iron-related proteins are overexpressed in BE to
EA progression [132]. In particular, divalent metal transporter1 (DMT1,
SLC11A2) overexpression was associated with metastatization.

8. Ion channels and transporters: use as cancer biomarkers in
Pancreatic Cancer (PC)

PC, and its most frequent form, the pancreatic ductal adenocarcino-
ma (PDAC), represents the tenth most common cause of death from
cancer in both sexes combined [3]. Despite recent efforts to optimize
surgical and pharmacological treatments, PDAC 5-year survival rate is
still poor, below 6% [90]. The main reasons of PDAC poor prognosis
include aggressive growth and a pro-invasive behavior, which account
for rapid development of distant metastases (a fact which also hinders
resectability of the primary tumor) as well as the rapid onset of
chemoresistance. Traditional PDAC prognostic factors include tumor
size and grade, lymph node status, resection margins and vascular or
neural invasion. Although in the last years many studies have been
performed to identify novel prognostic and predictive biomarkers,
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none of the molecular markers described so far can be recommended
for routine clinical use [138].

Some specific ICTs have been detected and characterized in PDAC
cells (Table 7): among K+ channels, Kir3.1 (KCNJ3) [139] and KCa3.1
(KCNN4) channels [140] are up-regulated both in PC cell lines and pri-
mary human PCs. On the contrary, Kv1.3 (KCNA3) expression is lower
in PC compared to healthy pancreas. Kv1.3 (KCNA3) downregulation
could be traced back to promoter's methylation and was associated
with the presence of metastases [139].

We recently showed that Kv11.1 (KCNH2) potassium channels are
expressed in human PDAC cells and patients' surgical samples. Kv11.1
(KCNH2) is physically and functionally linked to EGFR and its blockade
reduced PDAC cell growth and migration. Furthermore, PDAC patients
whose primary tumor showed high Kv11.1 (KCNH2) expression had a
worse prognosis.8

TRP cationic channels of either the ‘melastatin-related’ (TRPM) or
“capsaicin” (TRPV1) type [141] are expressed in PC. Increased TRPV1 ex-
pression was described in PC and in those patients it was correlated
with cancer pain [141]. The expression of TRP cationic channels in PC
and their role are reported in Table 7 and Fig. 1.

A recent report [145] showed that CLIC3 is not expressed in healthy
pancreas while it is expressed in PanIN lesions (i.e. hyperplastic/
dysplastic PDAC precursor lesions) and in PDAC. CLIC3 expression was
more abundant in invading regions, thus suggesting its involvement
in the metastatic process. Consistently, CLIC3 expression has a negative
impact on patient survival also at the multivariate analysis.

While CaCC (ANO1)was shown to play an important role in control-
ling PDAC cell proliferation [146],the sodium hydrogen exchanger 1
(SLC9A1) interacts with EGFR and is involved in PDAC cell invasiveness
(Table 7 and Fig. 1). ABC transporters are frequently deregulated in
PDAC samples; some of them are up-regulated (ABCB4, ABCB11, ABCC1,
ABCC3, ABCC5, ABCC10 and ABCG2), while others (ABCA3, ABCC6, CFTR
(ABCC7) and ABCC8) are down-regulated. Such deregulation apparently
contributes to PDAC poor response to therapy [148].

The L-type aminoacid transporter 1 (SLC7A5) was demonstrated to
be expressed at high levels in roughly 50% of PDAC samples. Several cor-
relations emerged from such analysis, both with clinico-pathological
and molecular features (stage, size, Ki-67, VEGF, CD34, p53 and CD98).
Moreover, SLC7A5 was identified as a poor prognosis marker at the
multivariate analysis [149].

The Solute Carrier transporters (SLC) is a family of transporters
frequently deregulated in PDAC. In particular, it was observed an
up-regulation of SLC22A3 and SLC22A18 and a down-regulation of
SLC22A1, SLC22A2, SLC22A11, SLC28A1, SLC28A3 and SLC29A1 in
PDAC samples with respect to normal pancreas [150]. High levels of
SLC28A1 were poor overall survival indicators while SLC22A3 or
SLC29A3 overexpression was associated with longer overall survival in
patients treated with nucleoside analogs (e.g. Gemcitabine). Further-
more, the loss of SLC5A8 (either complete or incomplete) was detected
in pancreatic tumor samples and it was traced back to aberrant promot-
er methylation [151]. More recently [153] it was shown that PC patients
with low and/or nuclear expression of SMCT1 (SLC5A8)were character-
ized by poorer survival compared to than patients with high SMCT1
(SLC5A8) expression.

Finally, the expression of the Human equilibrative nucleoside trans-
porter 1 (SLC29A1) was found to be associated to a longer time to pro-
gression. SLC29A1 could be used to predict gemcitabine effects in non-
resectable PDACpatients, if evaluated in samples takenduring endoscop-
ic ultrasound-guided fine-needle aspiration [152]. Similar data were
obtained in the ESPAC-3 trial [154], which showed that gemcitabine
should not be used in patients with low SLC29A1 expression. Different
conclusionswere drawnwhen analyzing SLC29A1 expression in patients
treated with chemo-radiotherapy [155].
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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9. Ion channels and transporters: use as cancer biomarkers inGastric
Cancer (GC)

GC is the third commonest cause of specific death worldwide and
5-year survival is less than 30% [90]. About 90% of GCs are classified as
adenocarcinomas, further divided into two subtypes according to the
Lauren's classification: the intestinal and diffuse type. The two Lauren's
types show different histological, biomolecular as well as geographical
and etiological characteristics. Biomolecular markers of GC include
E-cadherin, VEGF, andmicrosatellite instability. To date, HER2 represent
the only molecular target for therapeutic purposes. Consistently, the
only targeted therapy clinical trials available so far are those employing
Trastuzumab (with chemotherapy) in HER2-positive advanced GC
[156].

Among ICTs (Table 8) Kv11.1 (KCNH2) K+ channels have been
extensively studied in GC. Kv11.1 (KCNH2) channels are expressed in
GC cell lines and primary GCs. In GC cell lines they regulate tumor pro-
liferation [157]. Consistently, treatment with Kv11.1 (KCNH2) blockers,
like cisapride, and siRNA impairs tumor growth [158,160]. Kv11.1
(KCNH2) expression in GC cells was increased by a classical chemother-
apeutic drug, cisplatin, while Kv11.1 (KCNH2) silencing reduced
cisplatin-induced apoptosis [159]. Kv11.1 (KCNH2) expression was
demonstrated also in primary GCs where it correlates with grading,
TNM stage, serosal and venous invasion [160,161]. It was also shown
that themean survival timewas shorter in Kv11.1 (KCNH2) positive pa-
tients and Kv11.1 (KCNH2) expressionwas proposed as an independent
prognostic factor. With the aim of validating such data, we recently
published a study in which Kv11.1 (KCNH2) expression was tested (by
either IHC or Real timequantitative PCR) in awide (508 samples) Italian
cohort of surgically resected patients with GC. Kv11.1 (KCNH2) was
expressed in 68% of the patients, and positively correlated with the
Lauren's intestinal type, fundus localization, low grading and early
(TNM I and II) stages. Moreover, in early stage, T1 patients, Kv11.1
(KCNH2) expression identified high risk patients [162]. Moreover,
Kv11.1 (KCNH2) activitymodulated VEGF-A secretion, through a signal-
ing pathway similar to that already identified in CRC [98]. In this line,
treatment of immunodeficinet mice xenografted with human GC cells
with a combination of Kv11.1 (KCNH2) blockers and Bevacizumab (an
anti-VEGF-A-antibody) greatly impaired tumor growth [162].

While the over-expression of Kv11.1 (KCNH2) in GC depends on
altered stability of the KCNH2 mRNA, a study conducted on the genes
encoding the voltage-dependent calcium channel 2 subunit (CACNA2D1,
CACNA2D2, CACNA2D3, CACNA2D4) showed an aberrant methylation of
CACNA2D1/3 in GC samples. Interestingly, CACNA2D3 methylation level
correlateswith Lauren's diffuse type andwith shorter survival time [163].

CLC1 is expressed in GC cells and high levels of expression impair
cell proliferation and stimulate apoptosis, invasion and migration
in vitro [164]. CLC1 overexpression in primary GC correlates with clinico-
pathological parameters (lymph node involvement, stage, lymphatic
and perineural invasion) as well as with poor prognosis [165].

Among Aquaporins, AQP5 is expressed at significant levels in
Lauren's intestinal type-GC, where it shows an apical localization
[167], whereas AQP3 and AQP4 are not overexpressed in GC. Partially
contrasting resultswere published by Shen and coll. [166], who showed
that both AQP3 and AQP5 were overexpressed in GC andwere associat-
ed with lymph node involvement. Moreover, AQP3 expression was
higher in well differentiated tumors.

Among transporters, SLC7A5 is overexpressed in GC and is associat-
ed with clinico-pathological features (TNM stage, size, lymph node in-
volvement, local invasion) [168]. On the contrary, SLC16A3 is down-
regulated in GC especially in advanced, metastatic tumors [169] and is
associated with the Lauren's intestinal type. SLC16A1 is expressed at
the same levels in healthy stomach and GC, suggesting that it might
have a role in gastric physiology instead of in tumor progression [169].
4F2hc (SLC3A2), a member of the solute carrier family, was found to
be over-expressed in GC cell lines and in primary GC, with no significant
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correlation with clinico-pathological features of the patients' samples.
Since the study was conducted on a small number of samples (85), it
could not allow definitive conclusions [170]. ABCB1 and ABCG2 are
expressed in GC cell lines and human primary GC [171] and their ex-
pression is inversely correlated with tumor differentiation. Moreover,
ABCB1 expression is higher in Lauren's diffuse type samples [169].
ABCG2 has been used as a target for a variety of chemotherapy drugs
[172]. It was shown that cisplatin-driven ABCG2 mRNA increased ex-
pression in vitro is correlated with GC patients' outcome [173]. Since it
was conducted on a small number of samples it was not possible to
derive definitive conclusions from this study.

10. Conclusions

Cancer is an increasing cause of morbidity andmortality throughout
the world, as health advances continue to extend the human life span.
Recent research in the cancer field has gained great support from
information and concepts underlying Personalized Medicine, which is
nowadays revolutionizing the medical world. Understanding and inte-
grating genetic and molecular information with traditional clinical
knowledge is the hallmark of this transformation. These concepts have
driven current interest to identify molecular cancer profiles and new
specific molecular targets to be exploited either for risk stratification
purposes or for the identification of novel, patient-tailored, therapeutic
approaches.

A great contribution to this field originates from a new paradigm
that has recently been established in oncological research, based upon
the notion that ICTs control many “cancer hallmarks” in different
types of human cancers. Moreover, blocking the activity of either ion
channels or transporters impairs the growth of some tumors, both
in vitro and in vivo, which opens a new field for pharmaceutical re-
search in oncology.

Besides regulating different aspect of cancer cell behavior, ICT can
now represent novel cancer biomarkers, behaving either as diagnostic,
prognostic or predictive markers. Many of the studies performed so
far, have focused on single ICT expression, applying different techniques
(either IHC or Real Time Quantitative-PCR). From such studies some ICT
specific molecules have been identified as biomarkers in different can-
cer types, and some of them has been validated in controlled clinical
studies. For example, the nAChR and the genetic alterations affecting
the nACHR encoding locus might represent a strong prognostic marker
in lung cancer, although some indications already exist that it could
be also a marker in other cancer types. K+ channels of the KCNH family
(either Kv10.1 (KCNH1) or Kv11.1 (KCNH2)), might represent good bio-
markers in esophageal, colorectal, gastric and pancreatic cancer. For
Kv11.1 (KCNH2), good antibodies and evaluation scores have been
provided, making the detection of the channel easy for pathologists.
Two other good candidates amongK+ channels are BK (and its encoding
genes KCNMA1) and KCa3.1 (KCNN4) (and the corresponding KCNN4
gene), since they were detected in several types of cancers, and their
deregulated expression was also confirmed by recent transcriptomic
analyses in breast and lung cancers. Other good candidates are ABC or
SLC transporters as well as Aquaporins which are expressed mainly in
esophagus and pancreatic cancer. TRP channels, whose expression is
relevant in prostate and breast cancers, need validated antibodies and
protocols capable to discriminate the different TRP subtypes in order
to make the assessment of such channels in surgical or bioptic samples
easier with IHC.

This is indeed a questionable point: are future directions mainly
aimed at validate single targets applying IHC (since this technique is
easily accessible in any pathology units at the points of care), or is it bet-
ter to define multiple ICT profiles by high throughput analyses (similar
to the “MammaPrint” or the “Cancer Panel”) to be further exploited by
the industries involved in the molecular diagnostics field. Since -omics
results do not always fits in with IHC or single transcript analyses, and
cannot identify specific ICT splice or neonatal variants, either approach
promising cancer biomarker, Biochim. Biophys. Acta (2014), http://
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should be utilized in the near future. Moreover, the possibility of detect-
ing CTCs exploiting the abnormal expression of ICT should be also taken
into account. Indeed, the possibility of using non invasive diagnostic
methods in the patient represents one of the most ambitious goals in
future cancer diagnostics. Overall, a strong coordination not only be-
tween cell physiologists and oncologists, surgeons and pathologists,
but also with industries is needed to proceed towards the final goal of
exploiting ICT for diagnostic, prognostic or predictive purposes in
cancer, which seems now within reach.
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